Phase 4: Scale & Polish
Timeline: Weeks 13-16 Status: Planned Prerequisites: Phase 3 complete with all agents operational
Overview
Phase 4 prepares the system for production scale. Focus shifts from building features to optimization, observability, and operational excellence. The goal is supporting 10K users with <500ms latency and <$500/month cost.
Goal: Production-ready system handling 10K users, 10K QPS, with 99.9% uptime.
Deliverables
Week 13: Performance Optimization
Focus: Reduce latency and cost through intelligent caching and batching
Edge Caching Strategy
Multi-Tier Cache Architecture:
// Cache hierarchy
const CACHE_LAYERS = {
// L1: Cloudflare edge (ultra-fast, limited size)
edge: {
userEmbeddings: '15min',
feedResults: '5min',
thompsonParams: '30min'
},
// L2: Cloudflare KV (fast, larger capacity)
kv: {
contentEmbeddings: '7days',
qualityScores: '24hours',
agentScores: '1hour'
},
// L3: Qdrant (source of truth)
qdrant: {
fullEmbeddings: 'permanent',
vectorSearch: 'no-cache' // Always fresh
}
};
Cache Invalidation Strategy:
class SmartCacheInvalidator {
async onUserInteraction(userId: string, action: string) {
if (SIGNIFICANT_ACTIONS.includes(action)) {
// Invalidate user embedding (preferences changed)
await this.invalidate(`user:${userId}:embedding`);
// Keep feed cache for 5min (balance freshness/cost)
// Will auto-refresh on next request after expiry
}
}
async onContentUpdate(contentId: string) {
// Invalidate quality scores
await this.invalidate(`content:${contentId}:quality`);
// Invalidate any feeds containing this content
const affectedUsers = await this.getUsersWithContent(contentId);
await Promise.all(
affectedUsers.map(u => this.invalidate(`feed:${u}`))
);
}
}
Database Query Optimization
Qdrant Optimization:
// Before: Slow filtered search
const results = await qdrant.search({
vector: userEmbedding,
filter: {
must: [
{ key: 'region', match: { value: 'AU' } },
{ key: 'category', match: { value: 'photographer' } },
{ key: 'quality', range: { gte: 0.8 } }
]
},
limit: 100
});
// After: Pre-filtered collections + vector search
const results = await qdrant.search({
collection: `au_photographers_quality`, // Pre-filtered
vector: userEmbedding,
limit: 100
});
// 10x faster!
Supabase Connection Pooling:
// Use Supavisor (Supabase's connection pooler)
const supabase = createClient(SUPABASE_URL, SUPABASE_KEY, {
db: {
pool: {
min: 2,
max: 10,
idleTimeoutMillis: 30000
}
}
});
Batch Processing
// Batch agent scoring (10 at a time)
class BatchedAgentScoring {
private queue: ScoringRequest[] = [];
async score(content: Content): Promise<number> {
return new Promise((resolve) => {
this.queue.push({ content, resolve });
if (this.queue.length >= 10 || this.timeoutReached()) {
this.processBatch();
}
});
}
private async processBatch() {
const batch = this.queue.splice(0, 10);
// Single LLM call for 10 evaluations
const scores = await this.batchScore(
batch.map(r => r.content)
);
// Resolve all promises
batch.forEach((req, i) => req.resolve(scores[i]));
}
}
Tasks: 1. Implement edge caching hierarchy 2. Optimize Qdrant queries with pre-filtering 3. Set up Supabase connection pooling 4. Add batching for LLM calls 5. Measure latency improvements
Success Criteria: - P99 latency < 500ms (down from ~1s) - Cache hit rate > 80% - Database connections stable - Cost reduction > 40%
Week 14: Monitoring & Observability
Focus: Comprehensive system visibility
Metrics Dashboard
System Health: - Request rate, latency (p50, p99, p99.9) - Error rate, success rate - Cache hit rates - Database query performance - Worker/Durable Object utilization
AI Performance: - Agent scoring distribution - Thompson Sampling convergence - MAGRPO stability (policy variance) - Embedding quality (clustering metrics) - Quality scores over time
Business Metrics: - Active users (DAU, MAU) - Session duration, retention - Content save rate, engagement - Vendor discovery rate - NPS, user satisfaction
Implementation:
// Metrics collection
class MetricsCollector {
async recordFeedRequest(userId: string, latency: number) {
await this.increment('feed_requests_total');
await this.histogram('feed_request_latency', latency);
// Track by user segment
const segment = await this.getUserSegment(userId);
await this.increment(`feed_requests_${segment}`);
}
async recordAgentDecision(
agent: string,
score: number,
latency: number
) {
await this.gauge(`agent_${agent}_score`, score);
await this.histogram(`agent_${agent}_latency`, latency);
}
}
Alerting Rules:
const ALERTS = [
{
name: 'high_error_rate',
condition: 'error_rate > 0.01',
severity: 'critical',
channel: 'pagerduty'
},
{
name: 'slow_feed_generation',
condition: 'feed_latency_p99 > 1000',
severity: 'warning',
channel: 'slack'
},
{
name: 'quality_drift',
condition: 'avg_quality_score < 0.7',
severity: 'warning',
channel: 'email'
}
];
Logging Strategy
// Structured logging for debugging
logger.info('feed_generated', {
userId,
feedSize: 20,
latency: 450,
agents: {
discovery: { score: 0.8, latency: 120 },
quality: { score: 0.9, latency: 80 },
archivist: { score: 0.7, latency: 100 },
serendipity: { score: 0.6, latency: 150 }
},
thompsonSampling: {
exploration: 0.3,
exploitation: 0.7
},
cacheHits: 12,
cacheMisses: 8
});
Tasks: 1. Set up metrics collection (Prometheus/Grafana) 2. Build real-time dashboards 3. Configure alerting rules 4. Implement structured logging 5. Create runbooks for common issues
Success Criteria: - All key metrics visible in real-time - Alerts fire before users notice issues - Mean time to detection (MTTD) < 5 minutes - Mean time to resolution (MTTR) < 30 minutes
Week 15: A/B Testing Framework
Focus: Systematic experimentation and optimization
Experiment Framework
class ExperimentFramework {
async assignVariant(userId: string, experiment: string): Promise<string> {
// Deterministic assignment based on user ID
const hash = this.hashUserId(userId, experiment);
if (hash < 0.5) return 'control';
return 'treatment';
}
async trackExperiment(
userId: string,
experiment: string,
metric: string,
value: number
) {
const variant = await this.assignVariant(userId, experiment);
await this.record({
experiment,
variant,
metric,
value,
userId,
timestamp: Date.now()
});
}
async analyzeExperiment(experiment: string): Promise<Results> {
const control = await this.getMetrics(experiment, 'control');
const treatment = await this.getMetrics(experiment, 'treatment');
return {
lift: (treatment.mean - control.mean) / control.mean,
pValue: this.tTest(control, treatment),
significant: pValue < 0.05,
sampleSize: { control: control.n, treatment: treatment.n }
};
}
}
Planned Experiments
Experiment 1: Foundation Model - Control: Sentence-BERT + simple aggregation - Treatment: Custom trained foundation model - Metric: Engagement, quality, retention - Duration: 2 weeks, 1000 users
Experiment 2: Thompson Sampling - Control: Beta-Bernoulli Thompson Sampling - Treatment: ENR-based Thompson Sampling - Metric: Regret, sample efficiency - Duration: 2 weeks, 1000 users
Experiment 3: Agent Count - Control: 4 agents (Discovery, Quality, Archivist, Serendipity) - Treatment: 6 agents (+ Engagement Forecaster, custom agent) - Metric: Quality, diversity, cost - Duration: 2 weeks, 500 users per variant
Tasks: 1. Build experiment framework 2. Set up statistical analysis 3. Create experiment dashboard 4. Run 3 key experiments 5. Document learnings
Success Criteria: - Framework supports concurrent experiments - Statistical significance detection - Learnings documented and actioned - At least 1 significant improvement shipped
Week 16: Production Hardening
Focus: Reliability, security, and operational readiness
Reliability Improvements
Graceful Degradation:
class ResilientOrchestrator {
async rankFeed(userId: string): Promise<Content[]> {
try {
// Try full multi-agent ranking
return await this.multiAgentRank(userId);
} catch (error) {
logger.warn('multi_agent_failed', { userId, error });
try {
// Fallback: Simple ranking
return await this.simpleRank(userId);
} catch (error) {
logger.error('simple_rank_failed', { userId, error });
// Last resort: Trending content
return await this.getTrendingContent();
}
}
}
}
Circuit Breaker:
class CircuitBreaker {
private failureCount = 0;
private lastFailure = 0;
private state = 'closed';
async call<T>(fn: () => Promise<T>): Promise<T> {
if (this.state === 'open') {
if (Date.now() - this.lastFailure > RESET_TIMEOUT) {
this.state = 'half-open';
} else {
throw new Error('Circuit breaker open');
}
}
try {
const result = await fn();
this.onSuccess();
return result;
} catch (error) {
this.onFailure();
throw error;
}
}
private onFailure() {
this.failureCount++;
this.lastFailure = Date.now();
if (this.failureCount > FAILURE_THRESHOLD) {
this.state = 'open';
}
}
}
Security Hardening
- Rate limiting per user (1000 req/hour)
- API key rotation
- Input validation and sanitization
- SQL injection prevention
- CORS configuration
- Secrets management audit
Documentation
- API documentation (OpenAPI spec)
- Runbooks for common operations
- Incident response playbooks
- Architecture decision records
- Deployment guides
Tasks: 1. Add graceful degradation 2. Implement circuit breakers 3. Security audit and fixes 4. Complete documentation 5. Disaster recovery testing
Success Criteria: - System survives agent failures - Zero security vulnerabilities - All operations documented - Disaster recovery tested
Final Metrics
Scale: - 10K users supported - 10K QPS capacity - 99.9% uptime
Performance: - P99 latency < 500ms - Cache hit rate > 80% - Error rate < 0.1%
Cost: - Total: < $500/month - Per user: < $0.05/month
Quality: - NPS > 50 - 30-day retention > 70% - Feed relevance > 0.85
Production Deployment Checklist
- Performance benchmarks passed
- Monitoring dashboards live
- Alerting configured
- A/B tests run and analyzed
- Security audit complete
- Documentation published
- Disaster recovery tested
- Team trained on operations
- Incident response plan ready
- Cost monitoring active
Post-Launch
Week 17+: Continuous Improvement 1. Monitor metrics daily 2. Run weekly experiments 3. Monthly architecture reviews 4. Quarterly planning 5. Scale based on growth
Resources
Monitoring: - Grafana Dashboards - Cloudflare Analytics - Sentry Error Tracking
Security: - OWASP Top 10 - Cloudflare WAF - Secrets Management
Operations: - Deployment Guide - Testing Guide - Runbooks
Congratulations! The system is production-ready. Time to scale and delight users.
See also: - Implementation Progress - Architecture Overview - Development Workflow